
Proof Assistance for Real-Time Systems Using an
Interactive Theorem Prover

Paul Z. Kolano

Computer Science Department, University of California
Santa Barbara, CA 93106 U.S.A.

kolano@cs.ucsb.edu

Abstract. This paper discusses the adaptation of the PVS theorem prover for
performing analysis of real-time systems written in the ASTRAL formal
specification language. A number of issues were encountered during the
encoding of ASTRAL that are relevant to the encoding of many real-time
specification languages. These issues are presented as well as how they were
handled in the ASTRAL encoding. A translator has been written that translates
any ASTRAL specification into its corresponding PVS encoding. After
performing the proofs of several systems using the encoding, PVS strategies
have been developed to automate the proofs of certain types of properties. In
addition, the encoding has been used as the basis for a transition sequence
generator tool.

1 Introduction

A real-time system is a system that must perform its actions within specified time
bounds. With the advent of cheap processing power and increasingly sophisticated
consumer demands, real-time systems have become commonplace in everything from
refrigerators to automobiles. Besides such numerous everyday uses, real-time
systems are also being employed in more complex and potentially deadly applications
such as weapons systems and nuclear reactor controls where deviation from critical
timing requirements can result in disastrous loss of lives and/or property. It is thus
desirable to extensively test and verify the designs of these systems to gain assurance
that such disasters will not occur. A number of formal methods for real-time systems
have been proposed [14] that provide a framework under which developers can
eliminate ambiguity, reason rigorously about system design, and prove that critical
requirements are met using well-defined mathematical techniques. Real-time systems
are characterized by concurrency, asynchrony, nondeterminism, and dependence upon
the external operating environment. Thus, the formal proofs of even simple real-time
systems can be nontrivial. To make the verification of real-world real-time systems
practical, mechanical proof assistance is necessary.

One such form of assistance is an interactive theorem prover. Interactive theorem
provers provide mechanical support for deductive reasoning. Each theorem prover is
associated with a specification language in which a system and associated theorems
are expressed. A theorem prover uses a collection of axioms and inference rules
about its specification language to reduce a high-level proof into simpler subproofs
that can eventually be discharged by basic built-in decision procedures that support

arithmetic and boolean reasoning. Theorem provers provide a number of forms of
assistance, including preserving the soundness of proofs, finishing off proof details
automatically, keeping track of proof status, and recording proofs for reuse.

This paper discusses the adaptation of the PVS theorem prover [8] for performing
analysis of real-time systems written in the ASTRAL [5] formal specification
language. A number of issues were encountered during the encoding of ASTRAL
that are relevant to the encoding of many real-time specification languages. These
issues are presented as well as how they were handled in the ASTRAL encoding. A
translator has been written that translates any ASTRAL specification into its
corresponding PVS encoding. After performing the proofs of several systems using
the encoding, PVS strategies have been developed to automate the proofs of certain
types of properties. In addition, the encoding has been used as the basis for a
transition sequence generator tool.

The remainder of this paper is organized as follows. In sections 2 and 3, brief
overviews of ASTRAL and PVS are given. In section 4, the issues encountered
during the encoding of ASTRAL are discussed. Section 5 describes the ASTRAL to
PVS translator. Strategies for automating ASTRAL proofs and the use of PVS to
develop a transition sequence generator are presented in section 6. Section 7
discusses related work. Finally, section 8 provides some conclusions and directions
for future research.

2 ASTRAL

In ASTRAL [5], a real-time system is described as a collection of state machine
specifications, each of them representing a process type of which there may be
multiple statically generated instances. There is also a global specification, which
contains declarations for types and constants that are shared among more than one
process type, as well as assumptions about the global environment and critical
requirements for the whole system.

An ASTRAL process specification consists of a sequence of levels. Each level is
an abstract data type view of the system being specified. The first (“top level”) view
is a very abstract model of what constitutes the process (types, constants, variables),
what the process does (state transitions), and the critical requirements the process
must meet (invariants and schedules). Lower levels are increasingly more detailed
with the lowest level corresponding closely to high level code. Figure 1 shows one of
the process types of an elevator control system. The Elevator_Button_Panel process
represents the button panel located within an elevator car.

The process being specified is thought of as being in various states, with one state
differentiated from another by the values of its state variables, which can be changed
only by means of state transitions. Transitions are described in terms of entry and
exit assertions, where entry assertions describe the constraints that state variables
must satisfy in order for the transition to fire, and exit assertions describe the
constraints that are fulfilled by state variables after the transition has fired. Variables
are changed atomically at the end of a transition’s execution with variables not
referenced in the exit assertion remaining unchanged. An explicit non-null duration is
associated with each transition. A transition is executed as soon as it is enabled (i.e.
when its entry assertion is satisfied), assuming no other transition for that process

instance is executing. In the Elevator_Button_Panel process, the clear_floor_request
transition is enabled when the elevator is currently stopped with its door opening at a
floor that has been requested.

PROCESS Elevator_Button_Panel
IMPORT

floor, request_dur, clear_dur,
elevator, elevator.position,
elevator.door_open,
elevator.door_moving

EXPORT
floor_requested, request_floor

VARIABLE
floor_requested(floor): boolean

INITIAL
FORALL f: floor

(~floor_requested(f))
TRANSITION request_floor(f: floor)

ENTRY [TIME: request_dur]
~floor_requested(f)

EXIT
floor_requested(f)

Becomes TRUE

TRANSITION clear_floor_request
ENTRY [TIME: clear_dur]

floor_requested(elevator.position)
& ~elevator.door_open
& elevator.door_moving
EXIT

floor_requested(elevator.position)
Becomes FALSE

INVARIANT
FORALL f: floor

(Change(floor_requested(f), now)
& ~floor_requested(f)

→ EXISTS t: time
(Change2(floor_requested(f)) < t
& t ≤ now
& past(elevator.position, t) = f
& ~past(elevator.door_open, t)
& past(elevator.door_moving, t)))

Fig. 1. The Elevator_Button_Panel process

Every process can export both state variables and transitions; as a consequence,
the former are readable by other processes and the external environment while the
latter are executable from the external environment. Interprocess communication is
accomplished by broadcasting the values of exported variables and the start and end
times of exported transitions. In the Elevator_Button_Panel process, the
floor_requested variable and the request_floor transition are exported. The position,
door_open, and door_moving variables of the elevator process are imported.

In addition to specifying system state (through process variables and constants)
and system evolution (through transitions), an ASTRAL specification also defines
system critical requirements and assumptions about the behavior of the environment
that interacts with the system. The behavior of the environment is expressed by
means of environment clauses, which describe assumptions about the pattern of
invocation of external transitions. Critical requirements are expressed by means of
invariants and schedules. Invariants represent requirements that must hold in every
state reachable from the initial state, no matter what the behavior of the external
environment is, while schedules represent additional properties that must be satisfied
provided that the external environment behaves as assumed.

The requirement and assumption clauses are expressed using a combination of
first-order logic and ASTRAL-specific constructs. The main constructs are the timed
operators used to express timing requirements. The start operator, Start(trans1, t1),
takes a transition trans1 and a time t1 and returns true iff the last start of trans1 was at
t1. Similarly, the end and call operators, End(trans1, t1) and Call(trans1, t1), return
true iff the last end or the last call of trans1 was at t1. The change operator,

Change(A, t), takes an expression A and a time t and returns true iff the last time A
changed value was at t. The past operator, past(A, t), takes an expression A and a
time t and returns the value of A at t. In addition to these operators, a special global
variable now is used to denote the current time, where the time domain is the
nonnegative real numbers.

Using these operators, a variety of complex properties can be expressed. For
example, the invariant of the Elevator_Button_Panel process states that between a
change to floor_requested(f) and a change back to ~floor_requested(f) for any floor f,
the elevator has been at f and its door has started opening. An introduction and
complete overview of the ASTRAL language can be found in [5]. For the complete
description and specification of the elevator system, see [16].

Rather than implementing a theorem prover for ASTRAL from scratch, it was
decided to take advantage of an existing general-purpose theorem prover adapted for
use with ASTRAL. PVS was considered ideal for ASTRAL given its powerful typing
system, higher-order facilities, heavily automated decision procedures, and ease of
use. Other theorem provers were also considered, including HOL [12] and ACL2
[15]. HOL does not have the usability of PVS and its decision procedures are not as
powerful [11]. ACL2 is also not as usable as PVS and has limited or no support for
arbitrary quantification and real numbers [20].

3 PVS

The Prototype Verification System (PVS) [8] is a powerful interactive theorem prover
based on typed higher-order logic. A PVS specification consists of a modular
collection of theories, where a theory is defined by a set of type, constant, axiom, and
theorem declarations. PVS has a very expressive typing language, which includes
functions, arrays, sets, tuples, enumerated types, and predicate subtypes. Types may
be interpreted or uninterpreted. Interpreted types are defined based on existing types,
while uninterpreted types must be defined axiomatically. Predicate subtypes allow
the expression of complex types that must satisfy a given constraint. For example, the
even numbers can be defined “even_int: TYPE = {i: int | EXISTS (j: int): 2 * j = i}”.

For any assignment or substitution that involves a predicate subtype, PVS
generates type correctness conditions (TCCs), which are obligations that must be
proved in order for the rest of the proof to be valid. For example, for the declaration
“e_plus_2(e: even_int): even_int = e + 2”, PVS generates the following TCC:

% Subtype TCC generated (line 7) for e + 2
e_plus_2_TCC1: OBLIGATION

(FORALL (e: even_int): (EXISTS (j: int): 2 * j = e + 2));

That is, it must be shown that adding two to an even number is still an even number.
Otherwise, the definition of e_plus_2 violates its stated type.

Like types, constants can either be interpreted or uninterpreted. The value of an
interpreted constant is stated explicitly, whereas the value of an uninterpreted constant
is defined axiomatically. Besides types and constants, a theory declaration contains
axioms, which are basic “truths” of the theory and theorems, which are hypotheses
that are thought to be true, but that need to be proven with the prover.

When the PVS prover is invoked on a theorem, the theorem is displayed in the
form of a sequent. A sequent consists of a set of antecedents and a set of

consequents, where if A1, ..., An are antecedents and C1, ..., Cm are consequents in the
current sequent, then the current goal is (A1 & ... & An) → (C1 | ... | Cm). It is the
user’s job to direct PVS with prover commands such as instantiating quantifiers and
introducing lemmas to show that either (1) there exists an i such that Ai is false, (2)
there exists an i such that Ci is true, or (3) there exists a pair (i, j) such that Ai = Cj.
PVS maintains a proof tree, which consists of all of the subgoals generated during a
proof. Initially, when the prover is invoked on a theorem, the proof tree contains only
the sequent form of that theorem. As the proof proceeds, subgoals may be generated
and proved. To prove that a particular goal in the proof tree is true, all its subgoals
must be proved true. PVS allows the user to define strategies, which are collections
of prover commands that can be used to automate frequently occurring proof patterns.

4 Encoding Issues

While encoding ASTRAL within PVS, a number of issues arose that needed to be
handled. Several of these issues are not exclusive to ASTRAL and occur in many
different real-time specification languages. The following sections discuss some of
these issues and how they were handled in the ASTRAL encoding.

4.1 Formulas As Types

In many real-time specification languages, a single formula may have multiple values
depending on the temporal context in which it is evaluated. Depending on the
language, the temporal context may be an explicit clock variable, or implicitly
derivable from the formula. To encode such languages into a theorem prover, it is
necessary to define formulas as types that can be evaluated in different contexts.

Two different approaches have been used to encode formulas as types in PVS. In
the TRIO to PVS encoding [1], an uninterpreted “ TRIO_formula” type is introduced
to handle this issue. In TRIO, the current time is always implicit, but the values of
formulas in the past and future can be obtained relative to the current time using the
dist operator, dist(A, t), which takes a formula A and a relative time t and gives the
value of A at t time units from the current time. In the TRIO encoding, the dist
operator is defined as a function of type [[TRIO_formula, time] → TRIO_formula].
Axioms are defined to transform elements of type TRIO_formula to other elements of
type TRIO_formula. Eventually, there must be a valuation from TRIO_formulas to
real-world values (i.e. booleans, integers, etc.) so that the decision procedures of PVS
can be invoked. Hence a valuation function is defined that takes a TRIO_formula and
produces the corresponding boolean value assuming an initial context of the current
time instant.

The Duration Calculus (DC) is another real-time language that has been encoded
into PVS [18]. DC is an implicit-time interval temporal logic in which the current
interval is not explicitly known. Rather than using uninterpreted types to define
formulas, however, the DC encoding takes advantage of the higher-order capabilities
of PVS and defines formulas as functions of type [Interval → bool]. DC operators are
defined as Curried functions, which when given their original operands, return a
function from an Interval to the original range of the operator. For example, the
disjunction operator “ \/” is defined as “ \/(A, B)(i): bool = A(i) OR B(i)” , where A and
B are of the type [Interval → bool] and i is of type Interval. Using this technique, the

resulting functions can be combined normally, while still delaying the evaluation of
the whole expression until a temporal context is given. Eventually, when a specific
interval is given, an actual boolean value is obtained.

For ASTRAL, the DC approach was chosen for several reasons. Since TRIO is an
implicit-time temporal logic, one of the main motivations of the TRIO encoding was
to keep the actual current time hidden. In ASTRAL, the current time can be explicitly
referenced using the variable now, thus it was unnecessary to keep the time hidden.
Another disadvantage of the TRIO encoding is that all of the axioms of first-order
logic needed to be explicitly encoded into PVS to manipulate the TRIO_formula type.
Using the DC encoding style, however, the built-in PVS framework could be utilized,
which includes all first-order logic axioms.

All ASTRAL operators have been defined as Curried functions from their operand
domains to the type [time → range]. For example, the ASTRAL operator
Start(trans1, t1) takes a transition trans1 and a time t1 and returns true iff the last start
of trans1 was at t1. Its PVS counterpart, Start1(trans1, at1) takes a transition trans1
and an operand at1 of type [time → time] and returns a function of type [time →
bool] such that when an evaluation time t1 is given will return true iff the last start of
trans1 at time t1 was at time at1(t1). In the Start1 definition, shown below, as well as
the definitions of all ASTRAL operators that take a time operand, the time operand is
itself of type [time → time] and is only evaluated after an evaluation context is
provided.

Start1(trans1: transition, at1: [time → time])(t1: {t1: time | at1(t1) ≤ t1}): bool =
Fired(trans1, at1(t1)) AND
(FORALL (t2):

at1(t1) < t2 AND t2 ≤ t1 IMPLIES
NOT Fired(trans1, t2))

With the operators defined in this manner, it is possible to combine ASTRAL
operators in standard ways and yet still produce an expression that will only be
evaluated once its temporal context is given. The explicit operator definitions also
allow all expressions translated from ASTRAL to PVS to be easily expanded and
reduced via the built-in mechanisms of PVS. The resulting encoding is very close to
the ASTRAL base logic with only slight syntactic differences and allows a specifier
who is familiar with the ASTRAL language to easily read the PVS expressions of
ASTRAL formulas.

4.2 Partial Functions

Some specification languages such as Z [19] allow the definition of partial functions
(i.e. functions that are only well defined at certain points) within specifications.
Unlike some other theorem provers, PVS does not support the use of partial functions
directly. To encode languages that allow the definition of partial functions or whose
operators themselves may be partial functions into PVS, alternative approaches must
be used. In lieu of partial functions, PVS has a very powerful predicate subtyping
system that allows functions to be declared with domains of only those elements
satisfying a given predicate, such as only those elements for which a function is well
defined. The user then proves TCC obligations that the operand of each function
satisfies the given predicate. For a specific class of functions, such as boolean

functions, an alternative to predicate subtyping is to define a new domain that
contains an additional undefined element and then modify the operators for that class
of functions to use the new domain. For example, for boolean partial functions, a
three-valued domain of {true, false, undefined} can be defined in PVS with boolean
operators modified to work with the new domain.

The partial functions in ASTRAL are the operators that take a time as an
argument. In ASTRAL, only times in the past may be referenced, thus any formula
that references a time beyond the value of now is undefined. In encoding these
operators into PVS, the choice was made to use the subtyping mechanism of PVS for
similar reasons as the choice to use the DC encoding style. Namely, it was preferable
to rely on the existing PVS framework as much as possible. There were also a
number of disadvantages to explicitly adding an undefined value and then modifying
the appropriate operators. For instance, many additional axioms needed to be added
to derive and manipulate expressions containing the undefined element. The main
drawback, however, is that the ASTRAL past operator, past(A, t), which takes an
expression A and a time t and returns the value of A at t, is a polymorphic function.
That is, the past operator can have multiple types depending on the type of A. Since
past takes a time, it is undefined when t is greater than now. Since A can be of any
type, essentially every type in the specification and hence every operator in the
language would need to be redefined using an undefined element. This was highly
undesirable and would have unnecessarily complicated both the encoding and the
resulting proofs.

Instead, by using the PVS subtyping mechanism, the user must prove TCCs
showing that the time operand of any timed operator used in a specification is less
than or equal to the temporal context given to the operator. Most of these obligations
will be trivial given that the time operands are usually based on now directly or on a
quantified time variable that was appropriately limited.

The definition of the Start1 operator in the previous section demonstrates the use
of the subtyping mechanism. The time operand of the Start1 function, at1, is of type
[time → time] and is only evaluated after an evaluation context is provided. Since it
is not known whether at1(t1) will be a valid operand or not (i.e. will cause the
expression to be undefined), t1 is limited by the PVS typing system to be greater than
or equal to at1(t1). It is then the user’s job to show via a TCC obligation that any
evaluation times of a Start1 expression occurring in a specification are permissible.
The other timed operators of ASTRAL are defined in a similar manner.

4.3 Noninterleaved Concurrency

Concurrency in real-time systems can be represented by either an interleaved or a
noninterleaved model. In an interleaved model, concurrent events occur sequentially
between changes to time, while in a noninterleaved model, concurrent events occur
simultaneously without an implied ordering. Timed state-machine languages that use
an interleaved model of concurrency use an explicit “ tick” transition to change time.
The combination of the implied ordering of interleaved concurrency and the use of a
tick transition allows the semantics of interleaved timed state-machine languages to
be simplified significantly over their noninterleaved counterparts because a system
execution can be represented as a sequence of transitions rather than an interval of

time in which one or more events occur or do not occur at each time. The proof
obligations for such languages are also correspondingly simplified since they can be
inductive on the nth transition to fire rather than a full induction on a possibly dense
time domain.

In ASTRAL, the proof obligations are carried out modularly by proving the
properties of each process individually and then proving global properties based on
the collection of process properties. Although the sequence of transitions that fire in a
particular process can be represented by an interleaved model since transition
execution is nonoverlapping, this sequence is not enough to discharge the proof
obligations of the process. Transition entry assertions and process properties can
reference calls from the external environment, changes to the values of imported
variables, and call/start/end times of imported transitions. These events can occur at
any time with respect to the sequence of transitions in a particular process. Thus, the
semantic representation of ASTRAL needs to handle multiple concurrent events as
well as gaps in time in which no events occur, which requires a noninterleaved model
of concurrency.

The semantics of ASTRAL are based on the predicates Called and Fired.
Called(trans1, t1) is true iff transition trans1 was called from the external environment
at time t1. Fired(trans1, t1) is true iff trans1 fired at t1. Since a different transition
may be executing on each process instance, each process instance has a separate Fired
and Called predicate. In ASTRAL, a given process instance “ knows” its own
execution history completely, but only knows the portion of the execution history of
other process instances that pertains to the exported transitions of those instances. In
the semantics, for a given process instance, the Fired and Called predicates of the
process can be used to derive information about the state variables of the process and
vice-versa. The predicates of other process instances, however, can only be used to
derive a limited amount of information about those processes. Namely, if an
imported transition ended, then it is known there was a corresponding start and
similarly, if an imported transition started, then it was called.

Two of the ten axioms of the ASTRAL axiomatization are shown below. The
axiomatization of ASTRAL into PVS is a much revised and expanded version of the
ASTRAL axiomatization of [7] and includes corrections for both soundness and
completeness. The full version of the semantics presented in this paper defines the
current formal semantics of the ASTRAL language. The trans_fire axiom states that
if some transition is enabled and the process is idle (i.e. no transition in the middle of
execution), then some transition fires. The trans_mutex axiom states that whenever a
transition fires, no other transition can fire until its duration has elapsed (i.e. until the
transition ends). This axiom combined with trans_fire is sufficient to show that a
single unique transition fires on a particular process instance when some transition is
enabled and the process is idle. Note that since the semantics cannot be represented
by a sequence of transitions as in an interleaved model, it is necessary to assure that a
process is actually idle in order for a transition to fire.

trans_fire: AXIOM
 (FORALL (t1):

(EXISTS (trans1):
Enabled(trans1, t1)) AND

(FORALL (trans2, t2):
t1 - Duration(trans2) < t2 AND
t2 < t1 IMPLIES

NOT Fired(trans2, t2)) IMPLIES
(EXISTS (trans1):

Fired(trans1, t1)))

trans_mutex: AXIOM
 (FORALL (trans1, t1):

Fired(trans1, t1) IMPLIES
(FORALL (trans2):

trans2 ≠ trans1 IMPLIES
NOT Fired(trans2, t1)) AND

(FORALL (trans2, t2):
t1 < t2 AND
t2 < t1 + Duration(trans1) IMPLIES

NOT Fired(trans2, t2)))

Since ASTRAL is based on noninterleaved concurrency, the intra-level proof
obligations [7] (i.e. the proof obligations necessary to show that the invariant and
schedule of a level hold) are inductive on ASTRAL’s time domain. Since the time
domain of ASTRAL is the nonnegative real numbers, however, and simple induction
on that domain is not valid, the induction must be performed on nonempty intervals of
the nonnegative reals. That is, the induction hypothesis is assumed up to some
arbitrary time T0 and the user must show that it holds for a constant length of time ∆
> 0 afterwards. The induction case of the invariant proof obligation is shown below.

invariant_induct: THEOREM
(FORALL (T1): T1 ≤ T0 IMPLIES Invariant(T1)) IMPLIES

(FORALL (T1): T0 < T1 AND T1 < T0 + ∆ IMPLIES Invariant(T1))

For the induction to be reasonable, ∆ must be bounded because the bigger ∆
becomes, the more difficult it is to prove that the property holds at the times close to
the upper bound T0 + ∆. This is because at those times, more and more time has
elapsed since the last known state of the system (i.e. when the inductive hypothesis
held). In translating the proof obligations into PVS, it was not possible to say that ∆
is “ as small as possible” . Instead, an explicit upper bound needed to be chosen to
restrict ∆. The upper bound chosen for the ASTRAL encoding was a value less than
the smallest transition duration. That is, the conjunct “ (FORALL (trans1: transition):
∆ < Duration(trans1))” was added to the proof obligation above.

This bound is satisfactory for a number of reasons. The main justification is that
with ∆ bounded by the smallest duration, only a single transition can fire or complete
execution within the proof interval. This is advantageous because if only a single
transition can end, then the state variables can only change once within the interval.
Additionally, if a transition did end within the interval, then the inductive hypothesis
held when the transition began firing. These qualities are useful for automating the
proofs of certain types of properties as will be shown in section 6.1.

5 PVS Library and Translator

The axiomatization and operator definitions discussed in section 4 have been
incorporated into an ASTRAL-PVS library. The library contains the specification-
independent core of the ASTRAL language. In the axiomatization and operators,
some of the theories are parameterized by type and function constants. For example,
to define the trans_fire axiom, the type “ transition” and the function “ Duration” need

to be supplied to the axiomatization. In order to use the axiomatization, the
appropriate types and functions must be defined based on the specification to be
verified. An ASTRAL to PVS translator has been developed to automatically
construct all the appropriate definitions.

The major obstacle in translating ASTRAL specifications is translating identifiers
with types involving lists and structures. In ASTRAL, it is possible to define
arbitrary combinations of structures and lists as types, thus references to variables of
these types can become quite complex. For example, consider the following type
declarations: “ list1: list of integer” and “ struct1: structure of (l_one(integer): list1)” .
If s1 is a variable of type struct1, valid uses of s1 would include s1 by itself,
s1[l_one(5)], and s1[l_one(5)][9]. The translation of expressions such as these must
result in a Curried time function, so that it can be used with the definitions of the
Curried boolean and arithmetic operators. The expression in each bracket can be
time-dependent, so it is necessary to define the translation such that an evaluation
context (i.e. time) given to the expression as a whole is propagated to all expressions
in brackets.

In the translation of this example, s1 is a function of type [time → struct1] and
struct1 is a record [# l_one: [integer → list1] #]. The expression “ s1[l_one(5)][9]” ,
becomes “ (λ(T1: time): nth(((λ(T1: time): l_one((s1)(T1)) ((const(5))(T1))))(T1),
(const(9))(T1)))” . The lambdas are added to propagate the temporal context given to
the formula as a whole. Although the lambda expression generated for s1 looks very
difficult to decipher, translated expressions will never actually be used in this “ raw”
form. In the proof obligations, a translated expression is always evaluated in some
context before being used. Once this evaluation occurs, all the lambdas drop out and
the expression is simplified to a combination of variables and predicates. For
example, the expression above evaluated at time t becomes “ nth(l_one((s1)(t))(5), 9)” .
First, the value of the variable s1 is evaluated at time t. Then, the record member
l_one is obtained from the resulting record. This member is parameterized, so it is
given a parameter of 5. Finally, element 9 of the resulting list is obtained.

For the full details of the axiomatization of the ASTRAL abstract machine, the
operator definitions, and the ASTRAL to PVS translator, see [16].

6 Proof Assistance and Automation

After a specification is translated, the user must prove the inductive proof obligations
discussed in section 4.3. In general, the proof obligations are undecidable so they
require a fair amount of interaction with the prover. For timed properties, this
interaction usually consists of setting up the sequences of transitions that are possible
within the prover, proving that each sequence is indeed possible, and then showing
that the time of the sequence is less than the required time. Portions of these proofs
can be automated with appropriate PVS strategies [16], but the user must still direct
PVS during much of the reasoning. There are some property types, however, that can
oftentimes be proven fully automatically by PVS. After performing the proofs of
several systems using the encoding, PVS strategies have been developed to assist the
user in proving these types of properties.

6.1 Untimed Formulas

The try-untimed strategy was written to attempt the proofs of properties that do not
involve time and only deal with combinations of state variables of a single process
instance. For example, in the Elevator process type, one such property in the
invariant section is “ elevator_moving → ~door_moving” . That is, whenever the
elevator car is moving, the elevator door should not be in the process of opening or
closing. This property was proved completely unassisted by the try-untimed strategy.

The basis of the try-untimed strategy is that in the interval T0 to T0 + ∆ of the
proof obligations, the state variables either stay the same or one or more of them
change. If the variables stay the same, then by the inductive hypothesis, the property
holds at all times in the interval. If a variable changes during the interval, then by the
semantics of ASTRAL, a transition ended at the time of the change. Furthermore,
since transitions are nonoverlapping and, as discussed, ∆ has been limited to a
constant less than the duration of any transition, only a single transition end can occur
within the interval. Figure 2 depicts this situation. Let T1 be the time of such an end.
Since no transition ended in the interval [T0, T1), the state variables must have stayed
the same during that time period, thus the property holds by the inductive hypothesis.
Similarly, since no transition ended in the interval (T1, T0 + ∆], the variables are
unchanged in that region, thus the property holds in that region if it holds at T1. The
bulk of the strategy is thus devoted to proving that the property holds at T1.

T0 T0 + ∆

Start(trans1) End(trans1)

T1T1 - Duration(trans1)

invariant holds proof interval

Fig. 2. Proof interval

To prove this, it must be shown that all transition exit assertions preserve the
property, thus the proof is split into a case for each transition and the transition’s entry
and exit clauses are asserted. Once again, since ∆ was limited to less than the
duration of any transition, the start of the transition occurred before T0, thus the
property held at the start of the transition. From this point, a modified version of the
PVS grind command, which is a heavy-duty decision procedure that performs
rewriting, skolemization, and automatic quantifier instantiation, is invoked to finish
the proof. Grind in unmodified form rewrites all definitions in a specification. The
modified version does not rewrite the timed ASTRAL operators, since it is unlikely
that the decision procedures could use the information efficiently, thus expanding the
operators would only increase the running time of the strategy.

A side benefit of the try-untimed strategy is that even when it fails, it is still
advantageous for the user to run it because usually only very difficult cases will be
left for the user to prove. When the strategy fails, it is due to one of three reasons.
The first reason is that the user invoked the strategy on a timed property or one that
involves imported variables. In this case, it is likely that most of the cases will fail,

since try-untimed was not intended to deal with these types of properties. The second
reason is that one or more transitions do not preserve the property. In this case, the
user knows the exact transitions that failed since PVS will require further interaction
to complete those cases. The user can correct the specification before continuing with
other proofs. The last reason, which will be the most likely, is that it failed because
there was not enough information in the entry assertion of a transition to prove the
property. Usually, this occurs when the value of a variable in the formula to be
proved is not explicitly stated in the entry assertion of the transition, but instead is
implied by the sequences preceding that particular transition. For example, consider
the elevator property “ elevator_moving → ~door_open” . That is, the door must be
closed while the elevator car is moving. After running the try-untimed strategy, all
the transition cases are proved except for the “ door_stop” case. The door_stop
transition, shown below, stops the door in either the open or closed position after a
suitable length of time from when the door started moving.

TRANSITION door_stop
ENTRY [TIME: door_stop_dur]

door_moving
& now - t_move_door ≥ Change(door_moving)

EXIT
~door_moving

& door_open = ~door_open′

The strategy fails for this case because it is possible for door_open to be set to true
in the exit assertion and yet the value of elevator_moving is not stated in the entry
assertion so can possibly be true if door_stop follows a transition in which
elevator_moving is true. If elevator_moving is true and door_open is false when
door_stop begins firing, then the formula will hold at the start of execution yet will
not hold at the end of execution. In order to complete the proof of this property, it is
necessary to consider the transitions that can fire immediately before door_stop. If
the proof still cannot be completed, transitions must be considered further and further
back in time. Eventually, the formula will be provable or a violation will occur.

6.2 Transition Sequence Generator

Since sequencing is so important to proving some properties, it is useful to provide
the user with a tool to view the transition sequences that can occur in a given process
type. Such a tool can be used to estimate time delays between states, help the user
visualize the operation of the system, and in some cases can be used to prove simple
system properties. Unlike graphical state-machine languages in which the successor
information is part of the specification, in textual languages such as ASTRAL,
sequencing cannot be determined without more in-depth analysis. In addition,
determining whether one transition is the successor of another in ASTRAL is
undecidable since transition entry/exit assertions may be arbitrary first-order logic
expressions. Many successors, however, can be eliminated based only on the simpler
portions of the entry/exit assertions, such as boolean and enumerated variables.
Based on this fact, a transition sequence generator tool has been developed.

The sequence generator first eliminates as many transition successors as possible.
This is done by attempting the proof of an obligation trans1_not_trans2 for each pair

of transitions (trans1, trans2) as shown below. Note that this obligation only states
that some transition must end between trans1 and trans2 and does not exclude trans1
or trans2 from firing. The obligation is sufficient, however, to prove that a transition
besides trans1 and trans2 must fire in between any firing of trans1 and trans2. If only
trans1 and trans2 fire in between t1 and t2, then since t2 - t1 is finite and the durations
of trans1 and trans2 are constant and non-null, eventually a contradiction can be
achieved by applying the theorem below repeatedly on an ever shortening interval.

trans1_not_trans2: THEOREM
(FORALL (t1, t2):

t1 + Duration(trans1) ≤ t2 AND
Fired(trans1, t1) AND
Fired(trans2, t2) IMPLIES
(EXISTS (trans3, t3):

t1 + Duration(trans1) <
t3 + Duration(trans3) AND

t3 + Duration(trans3) ≤ t2 AND
Fired(trans3, t3))))

initial_not_trans1: THEOREM
(FORALL (t1):

Fired(trans1, t1) IMPLIES
(EXISTS (trans2, t2):

t2 + Duration(trans2) ≤ t1 AND
Fired(trans2, t2)))

An obligation initial_not_trans1, as shown above, is also attempted to prove that
each transition is not the first to fire after the initial state. The PVS strategies try-seq-
gen and try-seq-gen-0 were written to automatically discharge these obligations. The
try-seq-gen strategy uses abstract machine axioms to introduce the entry and exit
assertions of trans1, the entry assertion of trans2, and the fact that if nothing ended
between the end of trans1 and the start of trans2, then all variable values remained
constant during this time. Once all of this information is present, the strategy invokes
the modified grind command as discussed for the try-untimed strategy. The try-seq-
gen-0 strategy is similar but uses the initial clause of the process in place of the
information about trans1.

Table 1 shows the results of using these strategies to compute the successors for
each process type of a set of testbed systems developed in [16], which includes the
elevator control system. For each process type, the table shows the maximum number
of successors, the number of successors that are provably possible, and the number
that were computed automatically using the try-seq-gen strategies.

There are two main factors that contribute to the difference between the number of
successors that are provably possible and the number computed by the try-seq-gen
strategies in the testbed systems. The first factor is that entry assertions do not
usually constrain all of the state variables of a process. For example, the entry
assertion of the door_stop transition, shown in section 6.1, constrains the value of
door_moving, but does not constrain the value of elevator_moving.

When proving that the arrive transition, shown below, cannot follow door_stop,
PVS does not have information about the value of elevator_moving at the start of
door_stop, which is only derivable from the transitions preceding door_stop. Thus,
PVS must assume an arbitrary symbolic value for elevator_moving. It is possible that
elevator_moving is true, thus PVS cannot eliminate the possibility that arrive
immediately follows door_stop. It is provable that this is not the case, however,
because it is not possible to find a sequence of transitions starting from the initial state
in which arrive can immediately follow door_stop. The only possible predecessors to
door_stop are open_door and close_door. Open_door sets elevator_moving to false in

its exit assertion, thus if open_door immediately precedes door_stop, arrive cannot
follow door_stop. Similarly, it is possible to show that close_door must be preceded
by door_stop, which is preceded by open_door. Thus, arrive cannot follow
door_stop.

TRANSITION arrive
ENTRY [TIME: arrive_dur]

elevator_moving
& FORALL t: time

(t ≤ now
& (End(move_down, t)

| End(move_up, t))
→ now - t_move ≥ t)

& FORALL t, t1: time
(t ≤ now
& End(arrive, t)
& (End(move_up, t1)

| End(move_down, t1))
→ t < t1)

EXIT
IF going_up′
THEN position = position′ + 1
ELSE position = position′ - 1
FI

In order to improve the accuracy of the sequence generator for these processes, it
would be necessary to examine sequences back to a transition that causes a
contradiction. This is a non-terminating procedure, however, whenever the second
transition of a successor obligation actually is a successor of the first, thus it is
necessary to specify termination conditions such as a specific number of transitions
into the past or similar criteria. In general, this procedure is not worth the additional
time it would require unless the number of successors that could be eliminated using a
small number of backward steps is significantly higher than the number of actual
successors. As an alternative, the user can fully constrain all of the state variables in
the entry assertions.

The second factor that contributes to the difference between the number of
provable successors and the number computed by the try-seq-gen strategies is the use
of timed operators to define the sequencing between different operations. For
example, the end operator is used in the arrive transition to prevent arrive from
following itself. In the proof of the successor obligation arrive_not_arrive, arrive
fires at t1 and t2 and no other transition fires in between. By the last conjunct of
arrive’s entry assertion, there must be an end to move_up or move_down between the
last time arrive ended (t1 + arrive_dur) and the next time it fires (t2), which
contradicts the fact that no transition fires in between t1 and t2. This proof cannot be
carried out without the use of the end operator. The definition of the end operator
within PVS, however, is quite complex with several quantifiers, thus there is little
hope that PVS could automatically prove such an obligation. For this reason, the
modified grind used in the try-seq-gen strategies does not expand any of the timed
operators, which prevents work from being wasted.

Table 1. Transition successors of testbed systems

System Process Type maximum
successors

actual
successors

computed
successors

Bakery Algorithm Proc 42 8 25
Cruise Control Accelerometer 2 2 2

Speed_Control 132 76 94
Speedometer 2 2 2
Tire_Sensor 2 2 2

Elevator Elevator 42 13 24
Elevator_Button_Panel 6 4 4
Floor_Button_Panel 20 14 14

Olympic Boxing Judge 2 2 2
Tabulate 12 4 6
Timer 6 3 3

Phone Central_Control 420 235 312
Phone 110 50 69

Production Cell P_Crane 156 13 36
P_Deposit 6 3 3
P_Deposit_Sensor 6 3 3
P_Feed 20 14 14
P_Feed_Sensor 6 3 3
P_Press 42 7 7
P_Robot 420 21 129
P_Table 72 9 21

Railroad Crossing Gate 20 7 7
Sensor 6 3 3

Stoplight Controller 420 84 198
Sensor 6 3 3

Total 1978 585 986

When a transition is parameterized, such as the request_floor transition of the
Elevator_Button_Panel process shown in section 2, each set of parameters represents
one possible choice that a process can make. Usually, the start of a transition with
one set of parameters does not preclude the start of the same transition with a
different set of parameters immediately afterward. Thus, the sequences generated for
parameterized transitions do not usually give any helpful information to the user since
essentially any transition can follow any other.

Since the standard sequence generator proof obligations do not ordinarily produce
a useful result for parameterized transitions, a parameterized extension has been
added to the sequence generator. In this extension, if two transitions have the same
parameter list (i.e. the same number of parameters and parameter types), the successor
proof obligations are attempted assuming that the parameters are the same. That is,
the sequences are generated with a fixed set of parameters among consecutive
transitions. This is useful for finding the sequence of transitions in a single “ thread” .
For example, by keeping the parameters fixed in the Central_Control process of the
phone system of [5], the sequences of transitions that make up the evolution of a call
for a particular phone can be computed. The numbers in Table 1 were computed
using the parameterized extension. The numbers for the Elevator_Button_Panel,

Central_Control, and Controller processes are the only processes affected by this
extension.

After the successors have been computed, the sequence generator constructs
transition sequences based on input from the user, which includes the first and last
transitions, the direction to generate sequences from the first transition, the maximum
number of transitions per sequence, and the maximum number of sequences. There is
also an option to disallow sequences in which the same transition appears more than
once (besides as the first or last transition). The user must provide the maximum
number of transitions per sequence and if the search is backward, must provide the
first transition. The sequence generation process is completely automatic and is
available as a component of the ASTRAL Software Development Environment (SDE)
[17]. The ASTRAL SDE constructs the sequence generator obligations, invokes
PVS, runs the proof scripts, retrieves the results, and then generates the sequences
according to the user query. Since running the proof scripts can be time-consuming,
the results are saved between changes to the specification, so that sequences from
previous proof attempts can be quickly displayed.

For each sequence generated, an approximate running time of the sequence is
constructed by analyzing the entry assertion of each transition. Entry assertions
depend on the values of local and imported variables, the call/start/end times of local
and imported transitions, and the current time in the system. Transitions that only
depend on local variables and/or the start/end times of local transitions will always
fire immediately after another transition. Transitions that reference the current time,
however, may be delayed some amount of time before firing. For example, the
door_stop transition, shown in section 6.1, fires at least t_move_door after the door
starts moving. Similarly, transitions may wait indefinitely for a change to an
imported variable, a call/start/end to an imported transition, or a call to a local
transition from the external environment. The three types of delays are denoted
delay_T for a time delay, delay_O for a delay because of the other processes in the
system, and delay_E for a delay due to the external environment.

The sequence generator is complete (i.e. if a sequence is possible it will appear as
a result) without the parameterized extension since the successor obligations are
performed using the PVS encoding, which will only eliminate a successor if it is
derivable that it cannot occur. The sequence generator is not complete with the
parameterized extension because it does not display any sequences in which two
parameterized transitions with the same parameter lists are given different parameters.
In this case, utility was chosen over completeness.

The accuracy of the sequence generator can be improved by manually performing
the proofs of those successor obligations that actually can be proved but could not be
automatically proved by the try-seq-gen strategies. The time used to run the proof
scripts or to refine the performance of the sequence generator is not wasted because
any successor eliminated can be used as a lemma in the main proof obligations.

As a simple example of a sequence generator query, consider the door_stop case
that failed in the try-untimed proof of “ elevator_moving → ~door_open” in section
6.1. The user may wish to view the predecessors to door_stop to see if the proof can
be completed quickly or if a violation is possible involving the door_stop transition.
Figure 3 shows the sequence generator dialog box and the second of the three
sequences generated from the query.

Fig 3. Sequence generator dialog box and query result

Three sequences are returned to the user, which show three possible predecessors to
door_stop: close_door, open_door, and arrive. If close_door fires before door_stop,
the door is closed when door_stop completes firing, thus the property trivially holds.
The open_door transition sets elevator_moving to false, thus the property also
trivially holds if open_door fires before door_stop. The arrive transition, shown
earlier, requires the elevator car to be moving to fire. By the inductive hypothesis, the
door is closed when it fires, thus if arrive precedes door_stop, the invariant can be
violated because the elevator car is moving and door_stop sets door_open to true.
Therefore, the user knows that to complete the proof, it must be shown that arrive
cannot fire immediately before door_stop. The arrive case is another example of a
successor that the sequence generator could not eliminate automatically and yet is not
actually possible after further analysis. Thus, the user must consider the predecessors
of arrive and continue the proof process in a similar manner until the property is
proved. Additional uses of the transition sequence generator can be found in [16].

7 Related Work

The temporal logics TRIO [1] and DC [18] have been encoded into PVS as discussed
in section 4.1. TRIO is a lower-level formalism than ASTRAL and DC is not as
expressive. Several real-time state machine languages have also been encoded into
theorem provers. The Timed Automata Model has been encoded into PVS [2] and
Timed Transition Systems into HOL [13]. These languages are based on interleaved
concurrency, however, which makes their semantics simpler than those of ASTRAL.
Additionally, Timed Transition Systems are not defined in terms of arbitrary first-
order logic expressions and do not have the complex subtyping mechanisms that are
available in ASTRAL.

An encoding of ASTRAL into PVS was reported in [3] and [4], but this encoding
is based on a definition of ASTRAL that has been developed independently at Delft
University based on earlier ASTRAL work in [9] and [10]. The ASTRAL definition
in [9] and [10] did not include the notion of an external environment, thus did not
include the call operator, environmental assumptions, or schedules. The Delft

definition has diverged from the work reported in [5] and [7] and has essentially
become a different language. It includes only a small subset of the full set of
ASTRAL operators and typing options, does not include all of the sections of an
ASTRAL specification, and defines only a small fraction of the axiomatization of the
ASTRAL abstract machine. In addition, it is based on a discrete time domain and
proofs are performed with a global view of the system rather than using a modular
approach.

8 Conclusions and Future Work

This paper has discussed the adaptation of the PVS theorem prover for performing
analysis of real-time systems written in the ASTRAL formal specification language.
A number of issues were encountered during the encoding of ASTRAL that are
relevant to the encoding of many real-time specification languages. These issues
were presented as well as how they were handled in the ASTRAL encoding. A
translator has been written that translates any ASTRAL specification into its
corresponding PVS encoding. After performing the proofs of several systems using
the encoding, PVS strategies have been developed to automate the proofs of certain
types of properties. In addition, the encoding has been used as the basis for a
transition sequence generator tool.

A number of issues still need to be addressed in future work. The implementation
clause of ASTRAL, which is used to map relationships between upper and lower level
specifications, needs to be incorporated into the translator, as well as the inter-level
proof obligations used to show that an implementation is consistent with the level
above. Currently, the refinement mechanism described in [6] is in a transitional
phase, so its translation was postponed until the new refinement mechanism is in
place.

A number of enhancements to the sequence generator can be added. For instance,
it is useful to provide a more powerful interface. For example, a query interface
could be added to answer queries such as whether a given transition can ever occur
between two other specified transitions. It is also possible to construct a symbolic
expression for the values of the state variables at the end of each sequence by
examining the entry and exit assertions of each transition.

In general, more proofs need to be performed for different ASTRAL systems
using their PVS translations. In studying the proofs performed for many systems,
more proof patterns may be discovered that can be incorporated into suitable PVS
strategies. The patterns may also lead to the definition of useful lemmas that can be
proven in advance and added to the ASTRAL-PVS library for future use. It is also
worthwhile to investigate whether the structure of the ASTRAL specification
determines which lemmas and strategies are most applicable to a given formula type.

References
1. Alborghetti, A., A. Gargantini, and A. Morzenti. Providing automated support to deductive

analysis of time critical systems. Proc. 6th European Software Engineering Conf., 1997.
2. Archer, M. and C. Heitmeyer. Mechanical verification of timed automata: a case study.

Proc. Real-Time Technology and Applications Symp., pp. 192-203, 1996.

3. Bun, L. Checking properties of ASTRAL specifications with PVS. Proc. 2nd Annual
Conf. of the Advanced School for Computing and Imaging, pp. 102-107, 1996.

4. Bun, L. Embedding Astral in PVS. Proc. 3rd Annual Conf. of the Advanced School for
Computing and Imaging, pp. 130-136, 1997.

5. Coen-Porisini, A., C. Ghezzi, and R.A. Kemmerer. Specification of realtime systems using
ASTRAL. IEEE Transactions on Software Engineering, 23(9): 572-598, 1997.

6. Coen-Porisini, A., R.A. Kemmerer, and D. Mandrioli. A formal framework for ASTRAL
inter-level proof obligations. Proc. 5th European Software Engineering Conf., pp. 90-108,
1995.

7. Coen-Porisini, A., R.A. Kemmerer, and D. Mandrioli. A formal framework for ASTRAL
intralevel proof obligations. IEEE Transactions on Software Engineering, 20(8): 548-561,
1994.

8. Crow, J., S. Owre, J. Rushby, N. Shankar, and M. Srivas. A tutorial introduction to PVS.
Workshop on Industrial-Strength Formal Specification Techniques, 1995.

9. Ghezzi, C. and R.A. Kemmerer. ASTRAL: an assertion language for specifying realtime
systems. Proc. 3rd European Software Engineering Conf., pp. 122-140, 1991.

10. Ghezzi, C. and R.A. Kemmerer. Executing formal specifications: the ASTRAL to TRIO
translation approach. Proc. Symp. on Testing, Analysis, and Verification, 1991.

11. Gordon, M. Notes on PVS from a HOL perspective. Available at
<http://www.cl.cam.ac.uk/users/mjcg/PVS.html>, 1995.

12. Gordon, M.J.C. and T.F. Melham (eds.). Introduction to HOL: a theorem proving
environment for higher order logic. Cambridge University Press, 1993.

13. Hale, R., R. Cardell-Oliver, and J. Herbert. An embedding of timed transition systems in
HOL. Formal Methods in System Design, 3(1-2): 151-174, 1993.

14. Heitmeyer, C. and D. Mandrioli (eds.). Formal methods for real-time computing. John
Wiley, 1996.

15. Kaufmann, M. and J. Strother Moore. ACL2: an industrial strength version of Nqthm.
Proc. 11th Annual Conf. on Computer Assurance, pp. 23-34, 1996.

16. Kolano, P.Z. Tools and techniques for the design and systematic analysis of real-time
systems. Ph.D. Thesis, University of California, Santa Barbara, 1999.

17. Kolano, P.Z., Z. Dang, and R.A. Kemmerer. The design and analysis of real-time systems
using the ASTRAL software development environment. Annals of Software Engineering,
7, 1999.

18. Skakkebaek, J.U. and N. Shankar. Towards a duration calculus proof assistant in PVS. 3rd
Int. Symp. on Formal Techniques in Real-Time and Fault-Tolerant Systems, pp. 660-679,
1994.

19. Spivey, J.M. Specifying a real-time kernel. IEEE Software, 7(5): 21-28, 1990.
20. Young, W.D. Comparing verification systems: interactive consistency in ACL2. Proc.

11th Annual Conf. on Computer Assurance, pp. 35-45, 1996.

